BaBar Tracking

David Nathan Brown, LBNL

- ●BaBar Overview
- BaBar Tracking Algorithms
- Kalman Fit and Extensions
- Current and Future Developments

The BaBar Experiment

The BaBar Tracking Detectors

- 40-layer drift chamber
 - **♦** Axial and ± ~3° stereo layers
 - → ~150 μm resolution
 - ♦ He-based gas
 - ♦ dE/dx for PID
- 1.5T Solenoidal BField

- 5-layer double-sided Si tracker
 - **♦** Low mass in active volume
 - → ~10-20 μm hit resolution
 - **♦** Charge measurement (dE/dx)

Track uses in BaBar

- Triggering
- Event kinematics
- Decay vertices
- PID
 - → dE/dx
 - **♦** Extrapolation to outer detectors

BaBar Tracking Sequence

- Standalone Drift Chamber (Dch) track finding
 - **♦** Simple least-squares fit
 - ◆ Tracks from several independent modules are combined
- Kalman fit of Dch tracks
- Extension of Dch Kalman fits into Si vertex (Svt)
- Standalone Svt track finding
 - **♦** Simple least-squares fit
 - ◆ Tracks from 2 independent modules are combined
- Kalman fit of Svt tracks
- Extension of Svt Kalman tracks into Dch
 - ◆ Recovers hits on low-pt tracks

BaBar Track Finding

- Drift chamber tracks using segment patterns
 - **♦** Online (trigger) track finding using hard-coded pattern rules
 - **♦** Offline uses more flexible patterns
 - **♦** Segment seeds are grown into helix fits
- Si tracks using hit triples
 - **♦** Space point tripples in low-hit-density environment
 - ♦ R-phi triples assume tracks from origin: conformal map
 - ★ $\upsilon = x/(x^2+y^2)$, $\upsilon = y/(x^2+y^2)$ transforms circles through (0,0) to lines
- Track Finding is the oldest reco code in BaBar
 - ◆ No coherent design
 - ★ Fortran-style C++
 - ◆ Incomplete debugging and optimization
 - ★ Known performance problems

Ghost Tracks

BaBar Kalman Fit

- 'Traditional' Kalman Fit formalisms
 - **♦** Weighted Means
 - ★ Explicit progressive linear least squares
 - **→** Gain Matrix
 - ★ Equivalent mathematically, faster and more stable numerically
- BaBar uses a Hybrid, extended formalism
 - **◆** Use gain matrix where needed for speed, stability
 - **♦** Use weighted means where natural
 - **♦** Time ordering of 'information' is symmeterized
 - ★ Simplifies algorithm
 - **♦** Inner and outer track parameters treated the same
 - ★ Allows a more rational software organization
 - ★ Appropriate for inner and outer track uses
 - → Fit output is a 1-dimensional object in 3 space
 - ★ Not just parameters
- 5 stable mass hypothesis fit results

Hit Effect (in Weight Space)

Material Effect

$$P'_{out}$$
 (in) = P_{out} (in) + (-) $\delta P/\delta E \cdot \Delta E$

$$C'_{out,in} = C_{out,in} + (\delta P/\delta E)^2 \sigma_{\Delta E} + \left[(\delta P/\delta \Phi)^2 + (\delta P/\delta \Theta)^2 \right] \sigma_{ms}$$

Extended material is divided into chunks, effect modeled at a point

BaBar Field Map

(Bz-Bz0,Br) at phi 90.0deg

David Nathan Brown 11 Monday, May 15, 2006

Magnetic Field Inhomogeneity Effect

David Nathan Brown 12 Monday, May 15, 2006

Effect Processing

 \uparrow , \downarrow involve matrix inversion \Leftarrow , \Rightarrow involve only linear operations

Optimal 'parameters' are easy to compute

$$\beta_{\text{opt}} = \beta_{\text{out}} + \beta_{\text{in}}$$

$$\gamma_{\text{opt}} = \gamma_{\text{out}} + \gamma_{\text{in}}$$

BaBar Kalman Fit Organization

Kalman Based Track Extension

- The Kalman fit provides the optimal hit consistency measurement ($\Delta \chi^2$)
 - **♦** Includes all tracking environment effects
- Kalman formalism easily allows adding hits to the end of an existing track
 - ♦ Cost of 1 5X5 matrix inversion to compute χ²
 - **♦** Exploits 'progressive' roots
- Additional Pat. Rec. infrastructure is needed
 - → Hit pre-selection to reduce background
 - ★ Road extrapolation
 - **♦** Organize hits in coherent sets (segments, layers, ...)
 - **♦** Allow multiple simultaneous competing solutions
 - ★ Use 'future' information to help determine best hit choices
 - **→** Triage and arbitration for final choices

KalStub: A Track Extension Tool

Track Extension with KalStub

Other uses of BaBar Kalman Fit

- Tracking alignment
 - **♦** Interfaces for derivatives, residuals, ...
 - $ightharpoonup e^+e^-
 ightharpoonup \mu^+\mu^-$ fit
 - ★ Same formalism for any P₄-constrained fit
- Track improvement
 - → Brehmstrahlung recovery with Emc clusters
 - **♦** dE/dx momentum constraint in Si-only tracks
- Multi-layered persistence (root-based)
 - → Full Kalman fit (mini)
 - ★ Reconstitute materials, alignment, ... on readback
 - **♦** Fit summary
 - ★ Fit parameters near origin, near
- Physics interface
 - **♦** Kinematics, vertexing parameters
- Event display (WIRED) (full piecewise helix)

TrkFixup: improving Tracks

- BaBar mini allows improving tracks in analysis
 - → Background removal
 - ★ Ghosts, loopers, decays, material interactions, ...
 - **→** Resolution improvement,
 - ★ dE/dx con. on Si-only tracks, Bremstrahlung recovery, ...
- Physics 'skimming' with TrkFixup starts in July
 - ◆ Inclusive B S/N increase from 0.79 to 1.14 applying TrkFixup

Open Source Tracking Project

Goal

◆ Create a repository for tracking code in HEP and related fields

Purpose

- ◆ Avoid duplication of effort and relearning in high-level algorithm development
- ◆ Provide a means for tracking software collaboration across experiments

Method

★ Refactorize software from existing HEP experiments and distribute through OpenSource

Status

- **→** Funding proposal in consideration
- **♦** Seed project (BaBar Kalman fit) in progress

Conclusions

- BaBar tracking is functioning for physics analysis
 - **♦** Sophisticated Kalman fit infrastructure
 - **♦** Extensive feature set
 - ◆ Battle tested
- Open source tracking project is starting
 - ◆ Seed on BaBar code
 - ♦ Outside collaborators are welcome
- References
 - http://arxiv.org/pdf/hep-ex/0105044
 - http://www-zeuthen.desy.de/CHEP97/paper/341.ps
 - http://chep2000.pd.infn.it/abs/abs_a328.htm

dE/dx constraint

- Idea: constrain momentum using (Svt) dE/dx by inverting B.B. curve
- Provides competitive P measurement as curvature at low momentum
- Makes $\delta P/P \sim flat vs P at <5\%$
- Reduces outlyers
- Need improved calibration of dE/dx to go below 90Mev

Bremsstrahlung Correction

Which Looper Track is Primary?

TrkHitFix Improves P_t resolution

$$\omega = 1/P_t$$

LDRD specifics (1st year)

- Start with BaBar track fit
 - **♦** OO C++, fully-featured, well understood locally
- Extract from BaBar, then adapt back to BaBar
 - ◆ Replace BaBar-specific dependencies with 'service adapters'
 - **♦** Compare performance with the original
- Simultaneously adapt to ILC (LDC)
 - **→** Proves portability
 - **♦** Of immediate use in detector concept studies
- Focus on having working code early
 - **♦** Learn-by-doing
 - **♦ Involve external people ASAP**